

Dynamic aspects of the production and perception of Korean sibilant fricatives Jeffrey J. Holliday¹, Patrick F. Reidy²

¹Korea University; ²Waisman Center; Dept. of Communication Sciences & Disorders, Univ. of Wisconsin-Madison

Background: Sibilant fricatives

- Most studies of sibilant fricatives have treated their spectra as static.
 - Spectral moments at midpoint (Li et al., 2009; Romeo et al., 2013)
 - Spectral moments at several time points, but no analysis of how the moments varied over time (Jongman et al., 2000)
- But sibilant fricative spectra do change over the course of the fricative (e.g. Iskarous et al., 2011).
 - English and Japanese /s/ do not differ in peak ERB frequency, but do differ in terms of peak frequency trajectory across the fricative (Reidy, 2015).

Background: Korean fricatives

- Korean has two sibilant fricatives, /sh/ and /s*/, which differ greatly in spectral dynamics, but have analyzed almost exclusively using static measures (e.g. Chang, 2013; Kallay & Holliday, 2012).
 - /sh/ has an earlier release of the lingual closure, resulting in aspiration before low and mid vowels (/a/, /ɛ/, /o/, /ʌ/), but not before high vowels (/i/, /ɨ/, /u/).
 - /s*/, however, is never aspirated.

• 6 female native Korean speakers

Three measures used in analysis:

- /sh/, and sometimes /s*/, is palatalized before /i/ (e.g. /shi/ \rightarrow [ci])
- Commonly used acoustic measures include F1 and H1-H2 at the onset of the following vowel, and centroid frequency at some point during the frication.

Illustration of acoustic measures

Time (s)

Research questions

- 1. Could Korean /sh/ and /s*/ be better differentiated using dynamic rather than static acoustic measures?
- 2. Would listeners' perception of these fricatives be better predicted by differences in dynamic rather than static measures?

Time (s)

Results: Production

0.4001

RM ANOVA (measure ~ fricative*vowel)

All acoustic measures revealed a main effect of fricative category:

- Linear centroid: F(1,5) = 25.4, p = .004
- Midpoint centroid: F(1,5) = 51.6, p < .001
- H1-H2: F(1,5) = 13.6, p = .0142

Fricative-vowel interaction terms were significant as well:

- Linear centroid: F(2,10) = 17.3, p < .001
- Midpoint centroid: F(2,10) = 18.3, p < .001
- H1-H2: F(2,10) = 5.8, p = .021

Method & Analysis: Perception

Coefficient of model's linear term ("linear centroid")

H1-H2 from a 25-ms window taken at vowel onset

Centroid from fricative midpoint ("midpoint centroid")

Method & Analysis: Production

• 18 fricative-initial words = $\{s^h, s^*\} + \{a, i, u\} \times 3$ words

Centroid measured from 17 multitaper spectra estimated

from 20-ms windows evenly spaced across the fricative.

• Word-initial CVs extracted, RMS normalized to 65 dB

Quadratic orthogonal polynomial model fit to the 17

Participants

centroid values

Participants

Measurements

Stimuli

• 12 native Korean listeners

Stimuli

- Extracted from the word productions of the 6 native Korean speakers above, plus productions from 6 female native Mandarin L2 learners of Korean (L2 productions included to ensure a wide range of goodness ratings).
- Full CV, and C only (with V removed)

Procedure

- Full CV stimuli
 - Identify the fricative category blocked by V
 - Provide a goodness rating blocked by CV
- C only stimuli
 - Same procedure as above, but the vowel portion was removed from the stimuli. Listeners were told what the following vowel originally was, however.

References

Chang, C. B. (2013). The production and perception of coronal fricatives in Seoul Korean. *Korean Linguistics, 15*, 7-49. // Iskarous, K., Shadle, C. H., & Proctor, M. I. (2011). Articulatory-acoustic kinematics: The production of American English /s/. *J. Acoust. Soc. Am., 129*(2), 944-954. // Jongman, A., Wayland, R., & Wong, S. (2000). Acoustic characteristics of English fricatives. *J. Acoust. Soc. Am., 108*(3), 1252-1263. // Kallay, J. & Holliday, J. J. (2012). Using spectral measures to differentiate Mandarin and Korean sibilant fricatives. *Proceedings of INTERSPEECH 2012*. // Li, F., Edwards, J., & Beckman, M. E. (2011). Contrast and covert contrast: The phonetic development of voiceless sibilant fricatives in English and Japanese toddlers. *J. Phon., 37*, 111-124. // Reidy, P. F. (2015). The spectral dynamics of voiceless sibilant fricatives in English and Japanese. Unpublished Ph.D. dissertation, The Ohio State University. // Romeo, R., Hazan, V., and Pettinato, M. (2013). Developmental and gender-related trends of intratalker variability in consonant production. *J. Acoust. Soc. Am., 134*(5), 3781-3792.

Identification accuracy

Telestity teelitesti eleetti eley									
	Vowel context	Accuracy	/sʰ/ response rate						
Full CV	/a/	96.5%	53.0%						
	/ i /	83.6%	55.8%						
	/u/	83.1%	52.6%						
Conly	/a/	85.4%	64.1%						
	/i/	65.0%	67.8%						
	/u/	63.7%	58.1%						

Results: Perception

- As in previous studies, identification accuracy is much poorer in high vowel contexts.
- While vocalic cues seem to carry most of the information needed for the /i/ and /u/ contexts, listeners can identify /sha/-/s*a/ reasonably well without any vocalic information at all.
- Listeners are biased toward /sh/ when no vocalic cues are present.

Relationship between identification, goodness ratings, and acoustic measures

 R^2 of linear models predicting identification and goodness ratings

Identification	Full CV			C only		
	/a/	/i/	/u/	/a/	/i/	/u/
Linear centroid	.613	.106	.058	.690	.181	.128
Midpoint centroid	.578	.371	n.s.	.527	.398	.106
H1-H2	.718	n.s.	n.s.			
Goodness rating	ness rating Full CV		V	C only		
	/sha/	/s ^h i/	/shu/	/sha/	/s ^h i/	/shu/
Linear centroid	.586	.419	.097	.566	.288	.173
Midpoint centroid	.508	.262	n.s.	.503	.463	.092
H1-H2	.541	.146	n.s.			
	/s*a/	/s*i/	/s*u/	/s*a/	/s*i/	/s*u/
Linear centroid	.494	n.s.	n.s.	.648	n.s.	n.s.
Midpoint centroid	.498	.106	.208	.370	.529	.173

.548 .168 *n.s.*

H1-H2

Linear centroid predicts identification response very well in the /a/ context, but is less predictive than midpoint centroid in the /i/ context (when aspiration is reduced and /sh/ is palatalized to [c]).

Linear centroid also predicts perceived goodness very well in the /a/ context, but less so in high vowel contexts.

Conclusion: Vocalic cues (e.g. H1-H2) do seem to be primary, but explaining identification accuracy across vowel contexts when vocalic cues are absent may be best explained by a combination of both dynamic and static cues.